...
Testa premium Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Om oss Kontakt Läxhjälp matemtaik Interaktivt material Hjälp & guider
Sök Mitt konto Logga ut Elev/lärar-registrering Logga in
EXEMPEL I VIDEON   Lektionsrapport   Hjälp Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
 ███████████████
    /        ██████████████████████████

Decimala talsystemet

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning

I den här lektionen går vi igenom det decimala talsystemet och hur detta byggs upp med hjälp av basen 10.

Decimala talsystemet – basen tio

Det decimala talsystemet är det talsystem som är allra vanligast att använda sig av i modern tid. I detta talsystem används basen $10$10 för att uttrycka alla tal. Det innebär att man kan uttrycka alla tal med endast tio olika tecken, nämligen tecknen $0,\text{ }1,\text{ }2,\text{ }3,\text{ }4,\text{ }5,\text{ }6,\text{ }7,\text{ }8$0, 1, 2, 3, 4, 5, 6, 7, 8 och $9$9, alltså det det vi kallar våra siffror. Det är detta talsystem som du har lärt dig sedan du varit liten och använder dagligen. 

Siffrornas värde i det decimala talsystemet

Varje siffra är olika mycket värd beroende på var i talet som det befinner sig. 

...
Ny här?
Så funkar Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Ingen bindningstid. Avsluta när du vill.

Utvecklad form

Alla tal kan skrivas på så kallad utvecklad form. Det innebär att man med hjälp av platsvärdena kan skriva talen som en summa av termer antingen i grundpotensform eller på något av sätten på bilden.

Decimala talsystemet

Vi är så invända med positionssystemet, alltså talsystem där varje siffras värde avgörs av vilken position i talet den har, så vi tänker sällan på att det egentligen är en summa av grundpotenser som avgör sifferkombinationens värde.

Exempel 1

Skriv talet  $365$365 i utvecklad form.

Lösning

Den första siffran i talet är $3$3 och dess position visar hundratal. Det innebär att värdet av siffran kan skriva som

 $3\cdot10^2=3\cdot100=300$3·102=3·100=300

Den andra är $6$6 och dess position visar tiotal. Det innebär att värdet av siffran kan skriva som

$6\cdot10^1=6\cdot10=60$6·101=6·10=60.

På den sista positionen hittar vi siffran $5$5.  Talet motsvarar ett ental och kan skrivas som

 $5\cdot10^0=5\cdot1=5$5·100=5·1=5.

Detta på grund av potenslagen $a^0=1$a0=1.

Vi får att talet  $365$365  i utvecklad form skrivs som antingen

 $3\cdot10^2+6\cdot10^1+5\cdot10^0$3·102+6·101+5·100,       $3\cdot100+6\cdot10+5\cdot1$3·100+6·10+5·1       eller      $300+60+5$300+60+5   

Vi fortsätter att förstå detta genom att visa två exempel till där vi går över till potensform. 

Exempel 2 – Heltal

Skriv talet $478$478 med hjälp av tiopotenser.

Lösning
 $478=4\cdot10^2+7\cdot10^1+8\cdot10^0$478=4·102+7·101+8·100 

Vi kan fortsätta att skriva om talet på följande vis.

 $4\cdot10^2+7\cdot10^1+8\cdot10^0=400+70+8$4·102+7·101+8·100=400+70+8 

Exempel 3 – Med decimaler

Skrivet talet $99,12$99,12 med hjälp av tiopotenser

Lösning

Här har vi två decimaler.

Denna första decimalens position motsvarar värdet $10^{-1}=\frac{1}{10}=0,1$101=110 =0,1.

Den andra decimalens position motsvarar värdet $10^{-2}=\frac{1}{10^2}=\frac{1}{100}=0,01$102=1102 =1100 =0,01

Därför får vi

 $99,12=9\cdot10^1+9\cdot10^0+1\cdot10^{-1}+2\cdot10^{-2}$99,12=9·101+9·100+1·101+2·102 

Så visas att talet står på basen 10

Om man vill vara tydlig med att talet är skrivet på just basen 10 kan man använda en indexering efter talet för att ange basen.

Talet $478_{10}$47810  eller $478_{tio}$478tio står på basen 10 då vi har angett ett index 10 efter talet. När du räknar så skriver man inte ut detta då det är underförstått att det är med det decimala talsystemet som du räknar. 

Andra kända talsystem är det binära talsystemet, med basen $2$2,  och det hexadecimala talsystemet, med basen $16$16. De kommer vi kolla på i kommande lektioner.

Exempel i videon

  • Exempel på hur talet $28$ byggs upp med det decimala talsystemet.
  • Skriv talet $365$ med hjälp av tiopotenser.
  • Skriv talet $2\,010\,500$ med hjälp av tiopotenser.

Kommentarer

Marianne Littke

Hej! I uppgift 1. Hur kan Milo få rätt, hen har ju skrivit den första tiopotensen som 0? Förklaringen är rätt, bedömer jag, men inte facit.

    Simon Rybrand (Moderator)

    Hej
    Vi har korrigerat den frågan, det fattades en etta där. Tack för att du sade till!


Endast Premium-användare kan kommentera.

e-uppgifter (8)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P
    PL
    M
    R1
    K


    Freja, Milo och Ylva ska skriva talet  $401,06$401,06  i utvecklad form, alltså med en grundpotens som motsvarar varje siffras position.

    Freja får det till
     $4\cdot10^3+0\cdot10^2+1\cdot10^1+0\cdot10^{-1}+6\cdot10^{-2}$4·103+0·102+1·101+0·101+6·102 

    Milo får det till
     $4\cdot10^2+0\cdot10^1+1\cdot10^0+0\cdot10^{-1}+6\cdot10^{-2}$4·102+0·101+1·100+0·101+6·102 

    Ylva får det till
     $4\cdot10^2+1\cdot10^1+6\cdot10^0$4·102+1·101+6·100   

    Välj det alternativ du anser stämmer.

    Rättar...
  • 2. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P1
    PL
    M
    R
    K

    Vilket är talet som i utvecklad forms, , alltså där varje siffra byts ut till grundpotensform, skrivs som  

    $8\cdot10^3+0\cdot10^2+0\cdot10^1+1\cdot10^0$8·103+0·102+0·101+1·100 ?

    Skriv talet med basen $10$10.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 3. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P1
    PL
    M
    R
    K

    Vilket är talet som i utvecklad forms skrivs som

      $1\cdot10^5+8\cdot10^4+2\cdot10^3+1\cdot10^2+1\cdot10^1+9\cdot10^0$1·105+8·104+2·103+1·102+1·101+9·100 ?

    Skriv talet med basen $10$10.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • ...
    Upptäck ett bättre
    sätt att lära sig
    "Ni hjälpte mig in på min drömutbildning. Handelshögskolan i Stockholm. Kunde inte vara mer tacksam för er tjänst!" -Emil C.
  • 4. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vilket tal skrivet i utvecklad form motsvarar antalet stjärnor nedan?

    Rättar...
  • 5. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vilket tal skrivet i utvecklad form motsvarar antalet prickar nedan?

    Talbaser_18_Prickar

    Rättar...
  • 6. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vilket antal prickar motsvarar talet  $3\cdot10^1+2\cdot10^0$3·101+2·100 

    A. Talbaser_5_Prickar   B. Talbaser_18_Prickar   C. Talbaser_28_Prickar   D. Talbaser_32_Prickar

    Rättar...
  • 7. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P
    PL
    M
    R1
    K

    Angelin har gjort en uppgift. Studera den och välj den kommentar du anser stämmer bäst.

    decimala-talsystemet-res-uppg

    Rättar...
  • 8. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vilket tal skrivs så här i utvecklad form?

    $0\cdot10^0+5\cdot10^{-1}+2\cdot10^{-2}$0·100+5·101+2·102 

    Rättar...
...
Upptäck ett bättre
sätt att lära sig
Gör som 100.000+ andra och nå dina mål
med Matematikvideo Premium.
Så funkar det för:
Elever/Studenter Lärare Föräldrar