...
Testa premium Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Om oss Kontakt Läxhjälp matemtaik Interaktivt material Hjälp & guider
Sök Mitt konto Logga ut Elev/lärar-registrering Logga in
EXEMPEL I VIDEON   Lektionsrapport   Hjälp Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
 ███████████████
    /        ██████████████████████████

Problemlösning funktioner

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning

Exempel i videon

  • Grafen i ett koordinatssystem beskriver hur en bergsklättrare bestiger ett berg.
    a) Hur långt har han nått efter 30 minuter?
    b) Vilken är medelhastigheten uppför berget?
    c) Beskriv bergsklättringen utifrån grafen med egna ord.
  • En korvkiosks intäkter på korvförsäljning under en dag kan beskrivas med funktionen $y=-450+15x$.
    a) Beskriv funktionens innebörd med egna ord.
    b) Hur många korvar behöver säljas för att gå ”break even”?
  • Johanna häller kaffe med temperaturen $92° \, C$ i en termos. Hon ställer sedan termosen utomhus där temperaturen är $ 15° \, C $. För att beskriva hur temperaturen $y° \, C$ i kaffet förändras med tiden $x$ timmar undersöker hon två olika modeller.
    Formel för modell A: $y=92-7x$.
    Formel för modell B: $y=92⋅0,93^x$.
    a) Beräkna kaffets temperatur efter tre timmar enligt formel A och enligt formel B.
    b) Beskriv med vardagligt språk vad formel A och vad formel B säger om hur temperaturen sjunker.
    c) Undersök hur många timma modell A och modell B kan gälla.
...
Ny här?
Så funkar Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Ingen bindningstid. Avsluta när du vill.

Formler och begrepp som används i video och övningar

Samband mellan Sträcka, tid och hastighet

$ S = V⋅T $
eller
$ V = \frac{S}{T} $
eller
$ T = \frac{S}{V} $
där $S=Sträcka$, $V=Hastighet (velocity)$ och $T=Tid$.

Förändringsfaktor

Förändringsfaktorn är det tal som man kan multiplicera ett annat tal med för att uppnå en önskad förändring. Om priset på en vara exempelvis är 100 kronor och detta pris ökar med 2 % så kan man multiplicera $ 100⋅1,02 = 102 $ för att få fram det nya priset. Förändringsfaktorn är då $ 1,02$. Om priset istället minskar med 15 % så är förändringsfaktorn $ 0,85 $ och det nya priset ges av $ 100⋅0,85 $.

Kommentarer

Lilian Karlsson

uppgift 2 har ingen rätt svar

    David Admin (Moderator)

    Tack för att du uppmärksammade oss på detta. Fixat!

Maryzabel Moucha

Det skulle varit bra om du förklarat hur man gjorde med den sista uppgiften då du sa att man kunde gissa sig till svaret, hur man gör då exponenten är okänd med potensen känd. Annars har du suveräna videos som bidrar mycket till, i alla fall min, inlärning!

Janne

Det är fel i videon, han vilar 45 minuter inte 1,5 h som ni säger

    Simon Rybrand (Moderator)

    Nej det är fel där, bra att du sade till om detta, skall korrigeras så fort som möjigt.

Anna Mann

Bra videos, jag lärde mig en hel del!


Endast Premium-användare kan kommentera.

e-uppgifter (11)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Alvar gillar att simma och funderar på om han ska bli medlem i simklubben eller ej.
    Som medlem får man betala en medlemsavgift med sedan får man rabatterat pris varje gång man simmar.

    Han har gjort två formler för att beskriva kostnaden för att simma om han väljer att bli medlem eller inte.

     $K\left(x\right)=40x$K(x)=40x  och  $P\left(x\right)=200+20x$P(x)=200+20x 

    Vad är medlemsavgiften?

    Rättar...
  • 2. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vad kostar inträdet på badhuset om man inte är medlem?

    Kostnaden som icke medlem beskrivs med formeln $K\left(x\right)=40x$K(x)=40x 
    Kostnaden som medlem beskrivs med formeln  $P\left(x\right)=200+20x$P(x)=200+20x 

    där  $x$x är antal besök på badhuset.

    Rättar...
  • 3. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B
    P1
    PL1
    M
    R
    K

    Hur många gånger måste Alvar simma innan han tjänar på att bli medlem?

    Kostnaden som icke medlem beräknas med formeln $K\left(x\right)=40x$K(x)=40x 
    Kostnaden som medlem beräknas enligt  $P\left(x\right)=200+20x$P(x)=200+20x 

    Rättar...
  • ...
    Upptäck ett bättre
    sätt att lära sig
    "Ni hjälpte mig in på min drömutbildning. Handelshögskolan i Stockholm. Kunde inte vara mer tacksam för er tjänst!" -Emil C.
  • 4. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P
    PL
    M
    R1
    K

    Grafen i figuren beskriver hur en klippdykare klättrar upp från havet på en klippa och utför ett mycket högt dyk där $y$y är höjden i meter över havet och $x$x är tiden i sekunder efter klättringens start.

    Mellan vilka tidpunkter är det troligt att klippdykaren vilar under klättringen?

    klippdykning-graf

    Rättar...
  • 5. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Priset på päron är proportionellt mot vikten. Vilka värden har $a$a och $b$b i tabellen?

    Vikt (kg)48 $a$a
    Pris (kr)48  $b$b 156

     

    Rättar...
  • 6. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P
    PL
    M1
    R
    K

    En taxichaufför ska ställa upp en formel som beskriver vinsten, $V$V,  han gör på varje körning dagtid. Startavgiften för varje åktur är $35$35 kronor och kunden betalar $26$26 kronor per körd kilometer.
    Chaufförens utgifter beräknas till $13$13 kronor per kilometer.

    Vilken funktion beskriver vinsten, $V$V, som beror på antalet körda kilometer $x$x av alternativen nedan?

    Rättar...
  • 7. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P
    PL
    M1
    R
    K

    Vilket funktionsuttryck beskriver hur mycket Siv betalar för ett antal bullar och ett annat antal läsk, om bullarna kostar $15$15 kr/st och läsken $20$20 kr/st?

    Rättar...
  • 8. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P1
    PL
    M
    R
    K

    En nyfödd bebis vikt $V\left(t\right)$V(t)  i kg efter $t$t månader kan under första året beräknas med formeln  $V(t)=3,5+0,5t$V(t)=3,5+0,5t . Hur lång tid tar det innan bebisen väger $6$6 kilo?

    Rättar...
  • 9. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B
    P1
    PL
    M1
    R
    K

    Du har tyvärr väldigt kallt hemma i din lägenhet. En vvs-tekniker tar $350$350 kr för att komma hem till dig och hitta problemet. Om han sedan också ska åtgärda problemet så är hans timkostnad $700$700 kr/timme. Efter besöket får du en faktura på $2100$2100 kr.

    Hur länge var teknikern hemma hos dig?  Ange svaret i timmar med en decimal.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 10. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B
    P1
    PL
    M1
    R
    K

    Ett samhälle på landet har $3500$3500 invånare. De senaste åren har många flyttat till samhället från den stora staden i närheten, och antalet invånare har ökat med $2\%$2% varje år. 

    Hur många invånare kommer samhället att ha om $8$8 år, förutsatt att ökningen fortsätter i samma takt?
    Ange svaret i jämnt hundratal.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 11. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B
    P1
    PL
    M1
    R
    K

    Det visar sig att antalet invånare i ett samhället inte ökar procentuellt, utan att det varje år flyttar in $20$20 personer till samhället. Hur många invånare har samhället då ha efter $8$8 år?

    Antalet invånare från början är $3500$3500 personer.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
...
Upptäck ett bättre
sätt att lära sig
Gör som 100.000+ andra och nå dina mål
med Matematikvideo Premium.
Så funkar det för:
Elever/Studenter Lärare Föräldrar