Vektorlängd - Så beräknas vektorns längd

LOGGA IN

VIA

OBS! Inget publiceras i ditt flöde utan ditt medgivande.

VIA E-POST

E-post/användarnamn

Lösenord

Glömt lösenordet?
eller
Matematik 1 C

Vektorlängd

Video

I den här video går vi igenom hur du beräknar en vektors längd med hjälp av pythagoras sats.

Är du ny här? Så här funkar Matematikvideo PREMIUM


  • 500+ pedagogiska videolektioner till hela gymnasiet och högstadiets matte.
  • 3500+ typiska övningsfrågor med tips och fullständiga förklaringar.
  • Heltäckande för din kurs, slipp leta efter videos själv på Youtube.
  • Träning inför nationella prov och högskoleprovets matematik.
PROVA FÖR 9 KR
Prova i 7 dagar för 9 kr, sedan endast 89 kr/mån.
Ingen bindningstid, avsluta prenumerationen när du vill.

Vad tycker du om videon?

4 votes, average: 3,75 out of 54 votes, average: 3,75 out of 54 votes, average: 3,75 out of 54 votes, average: 3,75 out of 54 votes, average: 3,75 out of 5
4
Du måste vara inloggad för att rösta.
Loading...

Övning

8
FRÅGOR

TESTA DIG SJÄLV

Alla övningar har fullständiga förklaringar och pedagogisk feedback som hjälper dig att förstå.
ANTAL FÖRSÖK
0
POÄNG
DINA
0
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
MEDELPOÄNG
ALLA
6

Text

Exempel i videon

  • Bestäm längden för den vektor som har startpunkt i $ (4,2) $ och slutpunkt i $ (8,10) $.
  • Parallellförflyttning av en vektor och sedan bestämning av dess längd.
  • Rita ut vektorerna $\vec{u} = (3, 1)$ och $\vec{v} = (-2, -2)$ och avgör vilken av dessa som är längst.

Vektorlängd

När en vektor ritas ut som en pil så representerar pilens längd hur stor denna vektor är. Så när vi beräknar en vektors längd så är det samma sak som att beräkna vektorns storlek. Om detta skulle överföras till ett konkret exempel så skulle vektorns längd t.ex. kunna visa hur stark en kraft är eller hur snabbt en projektil är på väg i en viss riktning.

För att beskriva en vektors längd så använder man samma skrivsätt som för absolutbelopp med två lodräta streck runt vektorn, tex $ |\vec{v}|$ eller $ |\vec{AB}|.

En vektors längd härleds från Pythagoras sats.

vektorlängd

Från Pythagoras sats får vi att $ |\vec{v}|^2=a^2+b^2 $. Alltså gäller att

$ |\vec{v}|=\sqrt{a^2+b^2} $

Vektorlängd

Längden på en vektor $ \vec{v}=(a,b) $ beräknas genom

$ |\vec{v}|=\sqrt{a^2+b^2} $

Exempel på beräkning av vektorlängd

Exempel 1

Beräkna $|\vec{v}|$ om $\vec{v}=(2,-9)$

Lösning:

$|\vec{v}|=\sqrt{2^2+((-9)^2}=\sqrt{4+81}=\sqrt{85} $

Exempel 2

Beräkna $|\vec{v}|$ om $\vec{v}=(0,6)$

Lösning:

$|\vec{v}|=\sqrt{0^2+6^2}=\sqrt{36}=6 $

Kommentarer

  1. I uppgift 7 blir svaret negativt. Absoluta tal är väl aldrig negativa?

    Jens Östling
    1. Hej
      Nej det skall inte vara negativt.
      Vi korrigerar detta omgående.

      Simon Rybrand

Kommentarer är inaktiverade. Logga in för att felrapportera.

Prova Premium i 7 dagar för 9 kr

Därefter 89 kr per månad.
Avsluta prenumerationen när du vill.
SKAFFA PREMIUM
Nej tack. Inte just nu.

Vad är detta?
Här hittar du matematiska symboler som kan användas när du ställer frågor på forumet eller kommenterar. När du klickar på symbolen markeras denna, kopiera genom klicka med höger musknapp eller använda kortkommandot Ctrl-C (PC) / cmd-C (Mac)
Förhandsvisning Latex:
Latexkod: