...
Testa premium Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Om oss Kontakt Läxhjälp matemtaik Hjälp & guider
Sök Mitt konto Logga ut Elev/lärar-registrering Logga in
EXEMPEL I VIDEON   Lektionsrapport   Hjälp Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
 ███████████████
    /        ██████████████████████████

Trigonometriska funktioner problemlösning 1

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning

Formler och begrepp som används i video och övningar

Amplitud

Innebörden av begreppet amplitud är avståndet I y – led från kurvans jämviktsläge (mittenläget lodrätt sett) till det högsta värdet för funktionen. Det är också så att den koefficient som står framför ”sin” eller ”cos” är detsamma som amplituden.

Period

Perioden kan ses som det avstånd I grader I x – led det tar för kurvan att återgå till sitt ursprungsläge. Om man vill beräkna perioden utifrån att man har en funktion $ y=sin(ax) $ så får man perioden genom att beräkna

$ Periodicitet = \frac{360}{a} $

Förskjutning uppåt/nedåt

Förskjutningen uppåt eller nedåt avgörs av om funktionen har en konstant (en siffra) som inte multipliceras med sin/cos/tan. Om denna konstant är positiv så förskjuts kurvan uppåt och är den negativ förskjuts kurvan nedåt.

Förskjutning höger/vänster

Förskjutningar åt höger eller vänster av kurvan avgörs av om det finns en konstant inuti argumentet till sinus/cosinusfunktionen enligt
$ y=sin(x ± a) $
där tecknet framför $a$ avgör om kurvan förskjuts åt höger eller vänster.
Om det är $+$ förskjuts kurvan åt vänster och $–$ så förskjuts kurvan åt höger.

...
Ny här?
Så funkar Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Ingen bindningstid. Avsluta när du vill.

Exempel i videon

  • Skissa grafen till funktionen $ f(x)=2cos(x-\pi) $.
  • En akties kurs i kronor/aktie varierar upp och ned enligt funktionen $ f(x)=30sinx+60 $ där $x$ är antalet dagar efter årsskiftet och $ f(x) $ ger priset på aktien. Hur många procent ökar aktien om du köper aktien vid dess lägsta värde och säljer vid dess högsta värde?
  • Bestäm konstanterna $ A, \, B \, och \, C $ till funktionen $ f(x)=A+BcosCx $ med hjälp av grafen (se bild i video).

Kommentarer

backis

måste nog hålla med första inlägget här, för att kunna göra maximala vinsten (200%) kan man inte enbart handla inom den givna perioden (1 år), utan måste kunna handla över ”nyåret”. visserligen räcker det att man har handlingsfrihet över 0,5 period men detta spann måste sträcka sig mellan två perioder (år), t.ex. -90 dagar till +90 dagar, eller mellan dag 270 till dag 450. Alltså räcker 1 period för att göra 200% vinst, men inte om denna sträcker mellan 0-360 dagar.

Goeran Hoegosta

Jag vet inte om det var uttalat men om du menar att ett år var en enda period (eventuellt fel beror på just denna premiss) så kommer det lägsta värdet EFTER det högsta värdet och du bör isf max kunna tjäna 30 enheter aka 50%. Skulle det varit -30sinx + 60 så skulle ju det blivit spegelvänt och jag hade hållt med om 200% ökning. Nu blir det ju 50%!

    Simon Rybrand (Moderator)

    Hej!
    Nej exemplet var nog inte tänkt att syfta till att en period var exakt ett år utan endast att (kanske för översiktligt) beräkna ökningen från det minsta till det högsta värdet efter årsskiftet och att man köper på lägsta värdet 30 och säljer på högsta värdet 90. Vi skall fundera på om exemplet kan förtydligas.


Endast Premium-användare kan kommentera.

e-uppgifter (2)

  • 1. Premium

    Rapportera fel

    Nedan är grafen till en funktion $ y = 4 + Bcosx $ utritad. Använd figuren och bestäm konstanten $B$.

    exempel1-trigonometriska-funktioner

     

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 2. Premium

    Rapportera fel

    Nedan är grafen till en funktion $y=3\sin \left(x-a\right)$ utritad. Använd figuren och bestäm konstanten $a$.

    exempel2-trigonometriska-funktioner

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
...
Upptäck ett bättre
sätt att lära sig
Gör som 100.000+ andra och nå dina mål
med Matematikvideo Premium.
Så funkar det för:
Elever/Studenter Lärare Föräldrar