...
Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Om oss Kontakt Läxhjälp matemtaik Hjälp & guider
Sök Mitt konto Logga ut Elev/lärare
-registrering
Logga in Prova för 9 kr Prova för 9 kr
EXEMPEL I VIDEON   Lektionsrapport   Hjälp Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
 ███████████████
    /        ██████████████████████████

Sidovinklar och vertikalvinklar

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning

När linjer skär eller utgår från varandra skapas ett antal olika typer av vinklar. Dessa vinklar brukar vara enkla att känna igen och kan exempelvis vara lika med varandra eller tillsammans $180°$180°. Här går vi igenom dessa typer av vinklar och vilka egenskaper som de har.

Sidovinklar

Är du ny här? Så här funkar Matematikvideo PREMIUM
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i 7 dagar för 9 kr, sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.
Är du ny här? Så här funkar Premium
  • 600+ tydliga videolektioner till gymnasiet och högstadiet.
  • 5000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kurs. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i 7 dagarför 9 kr. Sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.

Sidovinklar

Vinklarna $v_1$v1 och $v_2$v2 ligger bredvid varandra utmed en rät linje och är avdelade med ett gemensamt vinkelben. Då är de tillsammans $v_1+v_2=180°$v1+v2=180°. Dessa typer av vinklar kallas för sidovinklar.

Vertikalvinklar

vertikalvinklar

När två räta linjer skär varandra skapas det fyra vinklar mellan linjerna. När två vinklar $v_1$v1 och $v_2$v2 är motstående mot varandra så kallas de för vertikalvinklar. De är då lika stora. I bilden ovan är även $v_3$v3 och $v_4$v4 vertikalvinklar.

Likbelägna vinklar, alternatvinklar och supplementvinklar

Likbelägna vinklar, alternativinklar och supplementvinklar

När två parallella linjer $L_1$L1 och $L_2$L2 skärs av en tredje linje, en så kallad transversal, så skapas det ett antal olika vinklar. Dessa brukar kallas för likbelägna vinklar, alternatvinklar och supplementvinklar. I bilden här ovan gäller följande.

Vinklarna $v_1$v1 och $v_2$v2 är likbelägna vinklar och de är lika stora.

Vinklarna $v_2$v2 och $v_3$v3 är alternatvinklar och de är lika stora.

Vinklarna $v_2$v2 och $v_4$v4 är supplementvinklar och de är tillsammans $180°$180°.

Exempel

Nedan visas ett antal exempel med lösningar där vi använder det känner till om ovan nämnda vinklar.

Exempel 1

Exempel 1 sidovinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning:

Vinklarna är sidovinklar och är tillsammans $180°$180°.

 $v_1=180°-125°=55°$v1=180°125°=55°.

Exempel 2

Exempel 2 supplementvinklar

Bestäm storleken av vinkeln $v_1$v1.

Lösning:

Dessa två vinklar är supplementvinklar så då gäller att $v_1+115°=180°$v1+115°=180° 

Alltså kan vi beräkna vinkeln $v_1$v1 genom

 $v_1=180°-115°=65°$v1=180°115°=65° 

Exempel 3

Två vinklar $v_1$v1 och $v_2$v2 är sidovinklar. Vinkeln $v_1$v1 är dubbelt så stor som vinkeln $v_2$v2. Hur stora är vinklarna?

Lösning:

De två vinklarna är tillsammans $180°$180°. Vi kan beskriva $v_1$v1 som

 $v_1=2v_2$v1=2v2.

Vi ställer nu upp följande ekvation.

 $2v_2+v_2=180°$2v2+v2=180°

 $3v_2=180$3v2=180 

 $v_2=\frac{180°}{3}=60°$v2=180°3 =60°.

Då $v_1$v1 är dubbelt så stor så är denna vinkel $120°$120°.

Svar: Vinklarna är $v_1=120°$v1=120° och $v_2=60°$v2=60°

Kommentarer


Endast Premium-användare kan kommentera.

e-uppgifter (6)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 2. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur stor är den andra sidovinkeln om den ena är $30$30°?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 3. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • Är du ny här? Så här funkar Premium
    • 600+ tydliga videolektioner till gymnasiet och högstadiet.
    • 5000+ övningsfrågor med fullständiga förklaringar.
    • Heltäckande för din kurs. Allt på ett ställe.
    • Träning inför nationella prov och högskoleprovet.
    Prova i 7 dagarför 9 kr. Sedan endast 89 kr/mån.
    Ingen bindningstid. Avsluta när du vill.
  • 4. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Hur stor är vinkeln $x$x ?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 5. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Bestäm vinkeln $x$x då  $L_1$L1 och  $L_2$L2 är parallella.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 6. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B1
    P
    PL
    M
    R
    K

    Vilket påstående är sant?

    Rättar...

c-uppgifter (1)

  • 7. Premium

    Rapportera fel
    (0/1/0)
    ECA
    B
    P
    PL1
    M
    R
    K

    Den större sidovinkeln är tre gånger så stor som den mindre sidovinkeln. Hur stor är den mindre sidovinkeln?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...

a-uppgifter (1)

  • 8. Premium

    Rapportera fel
    (0/0/2)
    ECA
    B
    P
    PL1
    M1
    R
    K

    vertikalvinklar

    Två räta linjer skär varandra och fyra vinklar skapas enligt figuren ovan. Vertikalvinklarna $v_1$v1 och $v_2$v2 är tillsammans $40\text{ }\%$40 % mindre än vertikalvinklarna $v_3$v3 och $v_4$v4 tillsammans.

    Hur stor är $v_1$v1?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
Är du ny här? Så här funkar Premium
  • 600+ tydliga videolektioner till gymnasiet och högstadiet.
  • 5000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kurs. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Prova i 7 dagarför 9 kr. Sedan endast 89 kr/mån.
Ingen bindningstid. Avsluta när du vill.