Derivatans graf och Funktionens graf - (Ma 3, Ma 4) - Matematikvideo

LOGGA IN

VIA

OBS! Inget publiceras i ditt flöde utan ditt medgivande.

VIA E-POST

E-post/användarnamn

Lösenord

Glömt lösenordet?
eller
Matematik 3 BC

Derivatans graf och Funktionens graf

Video

Video, text & övningsfrågor av: Simon Rybrand

I den här videon tittar vi närmare på sambanden mellan funktionens graf, derivatans graf och andraderivatans graf. Tanken med videon är att du skall lära dig att förstå och tolka kopplingar mellan dessa.

Är du ny här? Så här funkar Matematikvideo PREMIUM


  • 600+ pedagogiska videolektioner till hela gymnasiet och högstadiets matte.
  • 4000+ typiska övningsfrågor med tips och fullständiga förklaringar.
  • Heltäckande för din kurs, slipp leta efter videos själv på Youtube.
  • Träning inför nationella prov och högskoleprovets matematik.
PROVA FÖR 9 kr
Prova i 7 dagar för 9 kr, sedan endast 89 kr/mån.
Ingen bindningstid, avsluta prenumerationen när du vill.
14 votes, average: 3,07 out of 514 votes, average: 3,07 out of 514 votes, average: 3,07 out of 514 votes, average: 3,07 out of 514 votes, average: 3,07 out of 5
14
Du måste vara inloggad för att rösta.
Loading...

Övning

8
FRÅGOR

TESTA DIG SJÄLV

Alla övningar har fullständiga förklaringar och pedagogisk feedback som hjälper dig att förstå.
ANTAL FÖRSÖK
0
POÄNG
DINA
0
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
MEDELPOÄNG
ALLA
2

Text

Exempel i videon

  • Två uppgifter där andraderivatan är beskriven som graf och där vi skissar derivata och funktion utifrån denna.
  • En uppgift där derivatan är beskriven och vi skissar möjliga funktioner utifrån denna.

Samband mellan derivatans graf och funktionens graf

Att representera en funktion med hjälp av en graf är något som man ofta gör. Om vi exempelvis har funktionen $ f(x) = x^2 + 3x + 1 $ så känns det ganska naturligt att denna funktion går att rita ut som en graf i ett koordinatsystem. Om vi deriverar f(x) så får vi derivatan $ f’(x) = 2x + 3 $ som i sig självt faktiskt är en linjär funktion som ritas ut som en rät linje i ett koordinatsystem. Mellan dessa bägge funktioner finns det förstås ett antal samband som genomgången behandlar.

Kortfattat kan dessa beskrivas enligt:

  • När andragradsfunktionen f(x) har en max-, eller minimipunkt så är dess derivata noll. Detta kommer i derivatans graf visas genom att dess graf där skär x – axeln.
  • När funktionen växer (ökar i y – värde) så kommer derivatan att vara positiv. Detta visar sig genom att derivatans graf där har ett positivt funktionsvärde (y – värde).
  • På samma vis är det när funktionen avtar (minskar i y – värde) där då derivatans graf kommer att ha ett negativt funktionsvärde.

Andraderivata – Derivata – Funktion

På samma sätt som derivatan och funktionen har ovanstående samband så finns samma samband mellan derivatan och andraderivatan.
På det här viset kan man gå från andraderivata till derivata och därefter till funktionen för att se de olika sambanden mellan dessa och hur de representeras i grafer. Vi visar två exempel på detta i genomgången.

Kommentarer

  1. I uppgift 6 fås att rätt svarsalternativ är fel, men själva förklaringen säger att rätt alternativ är rätt.

    // Rasmus

    Rasmus Mononen
    1. Vi korrigerar den uppgiften.

      Simon Rybrand
  2. Det står i min mattebok ”Lös ekvationerna grafiskt.” Kan du svara på om det är med miniräknare de menar? Detta gäller polynomekvationer. Tack

    MatMar
    1. Hej
      Ja om du skall lösa ekvationen grafiskt så gäller det att antingen använda dig av en grafritande räknare eller ett datorprogram/onlinelösning för att lösa ekvationen. Det går förstås att skissa upp funktionen själv men det är lite mer tidskrävande.

      Simon Rybrand
  3. Hej Simon!
    jag fått en matematik fråga om derivata och linjär funktion men jag förstår inte riktigt så här är frågan ”förklara på två olika sätt varför derivatan till en linjär funktion är konstant”
    a) förklara med hjälp av en graf?
    b) förklara med hjälp av derivatans definition?

    jaalle
    1. Hej, derivata beskriver ju förändringshastigheten för en funktion men kan också beskrivas som tangentens lutning i en punkt. En rät linje har ju inga tangenter på samma vis utan har samma lutning överallt på linjen, därför kommer derivatan att vara samma i alla punkter,dvs den är konstant.

      När du skall använda derivatans definition
      $\mathop {\lim }\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}$
      för att förklara detta kan du om du vill utgå från ett exempel på en rät linje, tex y= 3x+1, eller från räta linjens ekvation y = kx + m och beräkna derivatan för denna med hjälp av definitionen. Kika gärna på genomgången om derivatans definition för mer förklaring där.

      Simon Rybrand
  4. varför är inte svaret 0 på uppgift 3, är det inte i origo derivatan korsar x axeln? för att om svaret blir 1 då är ju derivatan konstant under x axeln och parallell med den men korsar inte den, vet inte om jag förstod frågan exakt, behöver lite mer förklaring på det

    nti_ma3
  5. Behöver alltså hjälp med talet ovan hur man kom fram till svaret.

    Scaleform2012
  6. Bestäm funktionens minimipunkt
    y = x^3 – 12x + 5
    Svaret ska tydligen bli (2,-11)

    Scaleform2012
    1. Hej, metoden här är att derivera och sedan ta reda på när derivatan är 0. Det finns liknande uppgifter i videon om derivata och nollställen, kolla gärna den först och fastnar du fortfarande på liknande uppgifter så hojta till i forumet eller här i kommentarerna så tar vi det därifrån.

      Simon Rybrand

Endast premiumkunder kan kommentera. Prova Premium!

Prova Premium i 7 dagar för 9 kr

Därefter 89 kr per månad.
Avsluta prenumerationen när du vill.
SKAFFA PREMIUM
Nej tack. Inte just nu.

Vad är detta?
Här hittar du matematiska symboler som kan användas när du ställer frågor på forumet eller kommenterar. När du klickar på symbolen markeras denna, kopiera genom klicka med höger musknapp eller använda kortkommandot Ctrl-C (PC) / cmd-C (Mac)
Förhandsvisning Latex:
Latexkod: