Den starka kärnkraften - Kärnfysik (Fy 1) - Matematikvideo

LOGGA IN

VIA

OBS! Inget publiceras i ditt flöde utan ditt medgivande.

VIA E-POST

E-post/användarnamn

Lösenord

Glömt lösenordet?
eller
Fysik 1

Den starka kärnkraften

Video

Video, text & övningsfrågor av: Daniel Johansson

1 vote, average: 4,00 out of 51 vote, average: 4,00 out of 51 vote, average: 4,00 out of 51 vote, average: 4,00 out of 51 vote, average: 4,00 out of 5
1
Du måste vara inloggad för att rösta.
Loading...

Övning

3
FRÅGOR

TESTA DIG SJÄLV

Alla övningar har fullständiga förklaringar och pedagogisk feedback som hjälper dig att förstå.
ANTAL FÖRSÖK
0
POÄNG
DINA
0
 
 
  • 1
  • 2
  • 3
MEDELPOÄNG
ALLA
1

Text

Den starka kärnkraften

Hur hålls atomkärnan samman?

En första gissning på svaret till denna frågan är att gravitationen håller samman kärnan.

Protoner och neutroner har en massa och dras därför mot varandra m.h.a. gravitationskraften.

Men om man räknar på detta så inser man snabbt att gravitationskraften är alldeles för svag för att ha någon inverkan på atomkärnan.

Det måste finnas någon annan kraft inom atomkärnan som drar neutroner och protonerna mot varandra och övervinner den elektriska repulsionen.

Och faktum är att det gör det.

Den kraften som håller samman protonerna och neutronerna i atomkärnan kallas för den starka kärnkraften.

Den starka kärnkraften verkar helt enkelt mellan nukleoner i atomkärnan och fungerar som ett slags lim som håller dem samman.

Kraften är betydligt starkare än den elektriska kraften i kärnan men är endast märkbar på väldigt små avstånd.

Detta är anledningen till att vi inte märker av den i vardagslivet. Den har en så kort räckvidd.

Balansgången mellan den starka kraftens attraktion och den elektriska kraftens repulsion gör att endast vissa atomkärnor kan existera.

Atomkärnor med ett visst antal neutroner och ett visst antal protoner.

Bindningsenergi:

Nukleonerna i en atomkärna är bundna till varandra. D.v.s. de har en energiskuld, eller en negativ potentiell energi, detta innebär att vi kan definiera begreppet bindningsenergi.

Bindningsenergi:

Den mängd energi som minst måste tillföras för att frigöra en nukleon från atomkärnan kallas för nukleonens bindningsenergi.

Total bindningsenergi:

En atomkärnas totala bindningsenergi är den energi som det skulle krävs för att plocka isär kärnan helt och hållet.

Dividerar man den totala bindningsenergin med antalet nukleoner i kärnan så får man det som kallas för genomsnittlig bindningsenergi per nukleon.

Vi kan tänka på den genomsnittliga bindningsenergin som ett medelvärde på hur mycket energi som krävs per nukleon för att plocka isär atomkärnan.

Hur stor den genomsnittliga bindningsenergin är på nukleon varierar från atom till atom. Detta åskådliggörs i följande graf:

 

Kommentarer är inaktiverade. Logga in för att felrapportera.

Prova Premium i 7 dagar för 9 kr

Därefter 89 kr per månad.
Avsluta prenumerationen när du vill.
SKAFFA PREMIUM
Nej tack. Inte just nu.

Vad är detta?
Här hittar du matematiska symboler som kan användas när du ställer frågor på forumet eller kommenterar. När du klickar på symbolen markeras denna, kopiera genom klicka med höger musknapp eller använda kortkommandot Ctrl-C (PC) / cmd-C (Mac)
Förhandsvisning Latex:
Latexkod: