Tänk på ett tal – Matematikvideo

LOGGA IN

VIA

OBS! Inget publiceras i ditt flöde utan ditt medgivande.

VIA E-POST

E-post/användarnamn

Lösenord

Glömt lösenordet?
eller

Tänk på ett tal

2018-09-19 Av Simon Rybrand 0 kommentarer

Säkert har du hört ”Tänk på ett tal” uppgifter någon gång. Det är uppgifter där någon ber dig tänka på ett tal och sedan utföra ett antal operationer med detta tal. Sedan så kan personen som frågar dig på något magiskt vis veta vilket tal du faktiskt tänkte på.

Här tänkte jag att vi tar några exempel på sådan uppgifter men att vi samtidigt förklarar matematiken bakom dessa magiska trick. Vi kan nämligen använda kunskaper från att utveckla och förenkla algebraiska uttryck för att förklara dessa gåtor.

Tänk på ett tal variant 1 – Vi kommer fram till ursprungstalet

I den här varianten så kommer man fram till samma tal som försökspersonen tänkte på från början.

1. Tänk på ett tal (Gärna något av talen 1-9 för enkelhetens skull)
2. Multiplicera med 2
3. Addera med 8
4. Dividera med 2
5. Subtrahera med 4
Vilket tal får du?

Säkerligen fick du nu samma tal som du började att tänka på! Så hur kan vi förklara att vi fick samma tal som vi började med?

Anledningen till att vi får samma tal som vi började med att är att vi först utför multiplikation och addition så att vi ökar på talet. Sedan minskar vi det lika mycket med hjälp av division och subtraktion så att vi ”kommer tillbaka” till samma tal. Vi kan visa att detta gäller alla tal genom att kalla det talet som vi tänker på för $x$x.

1. Tänk på ett tal: $x$x
2. Multiplicera med 2:$2x$2x
3. Addera med 8:$2x+8$2x+8
4. Dividera med 2:$\frac{2x+8}{2}=\frac{2x}{2}+\frac{8}{2}=x+4$2x+82 =2x2 +82 =x+4
5. Subtrahera med 4:$\left(x+4\right)-4=x$(x+4)4=x
Vi får samma tal $x$x!

Tänk på ett tal variant 1 – Vi vet vilket tal de får fram

I denna variant på denna matematiklek så kommer vi alltid fram till talet $565$565. Upplägget ser ut på följande vis.

1. Tänk på ett tal.
2. Addera 25 till det.
3. Sedan addera 125.
4.Sedan subtrahera 37.
5. Subtrahera med det ursprungliga talet.
6. Multiplicera resultatet med 50.
7. Dividera med 10.
Du fick talet 565.

Nyckeln till att förstå den här varianten är att vi faktiskt subtraherar med det ursprungliga talet i steg 5. Då har vi ”tagit bort” det och det som återstår är ju det som vi har lagt till, nämligen $25+125-37=113$25+12537=113. Så redan där vet vi vad vi har att jobba med och det som händer därefter är framförallt för att förvilla försökspersonen.

1. Tänk på ett tal. $x$x
2. Addera 25 till det. $x+25$x+25
3. Sedan addera 125. $x+25+125=x+150$x+25+125=x+150
4.Sedan subtrahera 37. $x+150-37=x+113$x+15037=x+113
5. Subtrahera det ursprungliga talet. $x+113-x=113$x+113x=113
6. Multiplicera resultatet med 50. $113\cdot50=5650$113·50=5650
7. Dividera med 10. $\frac{5650}{10}=565$565010 =565
Du fick talet 565.

Känner du till fler ”tänk på ett tal tricks”?

Kanske känner du till fler liknande talalgoritmer? Då får du gärna skriva dessa i kommentarerna nedan så kan vi samla på oss liknande uppgifter tillsammans! Om du vill får du gärna förklara tänk på ett taluppgiften som du beskriver också!

Gör som 1100+ matematiklärare, fysiklärare och skolpersonal och följ de senaste nyheterna i vårt nyhetsbrev.

Kommentera

E-postadressen publiceras inte. Obligatoriska fält är märkta *

*

Prova Premium i 7 dagar för 9 kr

Därefter 89 kr per månad.
Avsluta prenumerationen när du vill.
SKAFFA PREMIUM
Nej tack. Inte just nu.

Vad är detta?
Här hittar du matematiska symboler som kan användas när du ställer frågor på forumet eller kommenterar. När du klickar på symbolen markeras denna, kopiera genom klicka med höger musknapp eller använda kortkommandot Ctrl-C (PC) / cmd-C (Mac)
Förhandsvisning Latex:
Latexkod: