Problemlösning med Integraler och volymintegraler – Matematikvideo

LOGGA IN

VIA

OBS! Inget publiceras i ditt flöde utan ditt medgivande.

VIA E-POST

E-post/användarnamn

Lösenord

Glömt lösenordet?
eller
Matematik 4

Problemlösning med Integraler och volymintegraler

Integraler

Video

Video, text & övningsfrågor av: Simon Rybrand

I den här genomgången får du se lösningar till ett antal problemuppgifter om framförallt integraler och volymintegraler men även någon uppgift där vi repeterar derivata.

Är du ny här? Så här funkar Matematikvideo PREMIUM


  • 500+ pedagogiska videolektioner till hela gymnasiet och högstadiets matte.
  • 3500+ typiska övningsfrågor med tips och fullständiga förklaringar.
  • Heltäckande för din kurs, slipp leta efter videos själv på Youtube.
  • Träning inför nationella prov och högskoleprovets matematik.
PROVA FÖR 9 KR
Prova i 7 dagar för 9 kr, sedan endast 89 kr/mån.
Ingen bindningstid, avsluta prenumerationen när du vill.
1 vote, average: 5,00 out of 51 vote, average: 5,00 out of 51 vote, average: 5,00 out of 51 vote, average: 5,00 out of 51 vote, average: 5,00 out of 5
1
Du måste vara inloggad för att rösta.
Loading...

Övning

2
FRÅGOR

TESTA DIG SJÄLV

Alla övningar har fullständiga förklaringar och pedagogisk feedback som hjälper dig att förstå.
ANTAL FÖRSÖK
0
POÄNG
DINA
0
 
 
  • 1
  • 2
MEDELPOÄNG
ALLA
1

Text

Exempel i videon

  • Bestäm konstanten $a$ exakt så att integralen $\int\limits_0^1 (ax-ax^2) dx $ får värdet $\frac13$.
  • En rektangel är fäst med ena hörnet på linjen $y=6-x$ och innesluts av koordinataxlarna. Om vi snurrar rektangeln runt x-axeln bildas en cylinder. Bestäm dess maximala volym om $0<x<6$.
  • En cylindrisk glasbehållare med inre diameterna $16 \, cm$ är från början helt fylld med vatten. Behållaren roteras och så länge rotationshastigheten ökar rinner vatten över behållarens kant. Vid en viss rotationshastighet står vattenytan i behållaren enligt figur 1 (se video). Sedd från sidan beskriver då vattenytan en parabel som ges av sambandet $y=0,25x^2+2$. Hur mycket vatten har vid denna tidpunkt runnit ut ur behållaren?
  • Om man vill beräkna längden $L$ av en kurva $y=f(x)$ mellan två punkter vars x-koordinater är $a$ och $b$ kan man använda formeln
    $ L = \int\limits_a^b \sqrt{1+(f´(x))^2} dx $
    Beräkna längden av kurvan $ y=(x-\frac49)^{1/2} $ i intervallet $ 1≤x≤4 $.

Kommentarer

  1. Hur vet man att X2 = 2 i den andra uppgiften är en maxpunkt och inte en minpunkt?

    cmhedlund
    1. Hej, eftersom vi endast har en enda max/min punkt så måste denna vara en maximipunkt.
      Man borde metodmässigt kanske undersöka att det verkligen är en maxpunkt med teckenschema eller andraderivata. Men då vi endast har en enda max/min punkt i definitionsmängden så måste detta vara maxpunkten.

      Simon Rybrand

Kommentarer är inaktiverade. Logga in för att felrapportera.

Prova Premium i 7 dagar för 9 kr

Därefter 89 kr per månad.
Avsluta prenumerationen när du vill.
SKAFFA PREMIUM
Nej tack. Inte just nu.

Vad är detta?
Här hittar du matematiska symboler som kan användas när du ställer frågor på forumet eller kommenterar. När du klickar på symbolen markeras denna, kopiera genom klicka med höger musknapp eller använda kortkommandot Ctrl-C (PC) / cmd-C (Mac)
Förhandsvisning Latex:
Latexkod: