...
Testa premium Kurser Alla kurser Min sida Provbank Mina prov Min skola Läromedel Förälder Blogg Om oss Kontakt Läxhjälp matemtaik Hjälp & guider
Sök Mitt konto Logga ut Elev/lärar-registrering Logga in
EXEMPEL I VIDEON   Lektionsrapport   Hjälp Kopiera länk Facebook Twitter Repetera Rapportera Ändra status
 ███████████████
    /        ██████████████████████████

Kombinationer

Endast Premium- användare kan rösta.
Författare:Simon Rybrand
Rapportera fel Redigera lektion Redigera text Redigera övning

Så tolkas kombinationer

Till skillnad mot en permutation så tar man i en kombination av element inte hänsyn till den inbördes ordningen. Om du väljer ut 3 personer ur en klass att sitta på 3 stolar så innebär detta att det inte spelar någon roll vilken stol de sitter på. Om vi placerar dem från vänster till höger på stolarna så spelar det ingen roll om person A sitter på stolen till vänster eller mittenstolen. Det är fortfarande samma kombination.

Kombination

Urval där hänsyn till ordning inte tas. Kallas också för ett oordnat urval där varje föremål får väljas en gång.

Själva beräkningen av antalet kombinationer görs genom

$C(n,k) = {n \choose k} = \frac{n!}{k!(n-k)!}$

...
Ny här?
Så funkar Premium
  • 600+ videolektioner till gymnasiet och högstadiets matte.
  • 4000+ övningsfrågor med fullständiga förklaringar.
  • Heltäckande för din kursplan. Allt på ett ställe.
  • Träning inför nationella prov och högskoleprovet.
Ingen bindningstid. Avsluta när du vill.

Att beräkna kombinationer

När en kombination beräknas brukar beteckningen $ C(n, k) $ användas. Detta uttalas som antalet kombinationer av k element bland n element. Ett annat sätt som också används är ${n \choose k} $ som uttalas ”n över k”.

Så om vi skall beräkna antalet kombinationer av 4 element bland 10 element så ges detta av:

$C(10,4) = {10 \choose 4} = \frac{10!}{4!(10-4)!} = \frac{10!}{4!6!} = \frac{10⋅9⋅8⋅7}{4⋅3⋅2⋅1} = 210 $

Exempel i videon

  • På hur många sätt kan 3 personer väljas till en båtbesättning ur en grupp på 6 personer.
  • Beräkna C(6, 3)
  • Till en fotokurs skall läraren dela in deltagarna i grupper. Läraren har 3 listor med alla deltagare där varje lista innehåller 12 deltagare. Till den första gruppen skall läraren välja 2 personer från den första och den andra listan och 1 person från den tredje listan. På hur många sätt kan gruppen konstrueras om ingen hänsyn till ordningen i den utvalda gruppen tas.

Kommentarer

Emelie Ström

Hej!
varför använder du dig av multiplikation i sista exemplet och inte addition? 🙂

    Simon Rybrand (Moderator)

    Hej!
    Är det ett exempel i video, text eller övningar som du funderar på?

Mariam Hummadi

Hej
På exempel 4 står det att (29 över 6), sedan genom räkningen har det uppstått ett litet fel där det står (29-26) istället för (29-6). Eller ska det vara så?

    Simon Rybrand (Moderator)

    Nej, det skall inte vara så utan det skall stå en 6:a där. Det är nu korrigerat.

Sandra Grantelius

Under tiden 2.00-2.24 är bilden på videon svart!

    Simon Rybrand (Moderator)

    Hej, videon är uppdaterade så att inte det svarta är borttaget.

m1chaela

På exemplet med fotokursen får jag till att det blir 66*66*12 och inte 33*33*12.
(12*11/2=66) Eller har jag räknat helt fel?

    Simon Rybrand (Moderator)

    Hej, nej du har inte räknat fel. Det är en felberäkning i videon, vi skall åtgärda detta under dagen. Tack för att du kommenterade detta!


Endast Premium-användare kan kommentera.

e-uppgifter (4)

  • 1. Premium

    Rapportera fel
    (1/0/0)
    ECA
    B
    P1
    PL
    M
    R
    K

    Beräkna $C(9,2)$.

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 2. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B1
    P1
    PL
    M
    R
    K

    Vad är antalet kombinationer av $b$ element bland $b$ element?

    Rättar...
  • 3. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B1
    P1
    PL
    M
    R
    K

    På hur många sätt kan man välja ut $6$ personer ur en grupp på $8$ personer om deras inbördes ordning inte spelar någon roll?

    Rättar...
  • ...
    Upptäck ett bättre
    sätt att lära sig
    "Ni hjälpte mig in på min drömutbildning. Handelshögskolan i Stockholm. Kunde inte vara mer tacksam för er tjänst!" -Emil C.
  • 4. Premium

    Rapportera fel
    (2/0/0)
    ECA
    B1
    P1
    PL
    M
    R
    K

    På hur många sätt kan du välja två olika fruktsorter från en korg med äpplen, apelsiner och bananer?

     

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...

c-uppgifter (3)

  • 5. Premium

    Rapportera fel
    (0/3/0)
    ECA
    B1
    P1
    PL1
    M
    R
    K

    En lärare har en samling med $30$ matteuppgifter där $10$ st är på E-nivå, $10$ st på C-nivå och $10$ st på A-nivå. Till ett prov ska $5$ E-uppgifter, $4$ C-uppgifter och $3$ A-uppgifter väljas ut (utan hänsyn till ordningen). På hur många sätt kan ett sådant prov konstrueras?

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
  • 6. Premium

    Rapportera fel
    (0/3/0)
    ECA
    B1
    P1
    PL1
    M
    R
    K

    I en låda finns det $10$ defekta och $90$ felfria produkter. $5$ produkter ska väljas på måfå (utan hänsyn till ordning). Hur stor är sannolikheten att alla $5$ produkter som väljs är felfria?

     

    Rättar...
  • 7. Premium

    Rapportera fel
    (0/2/0)
    ECA
    B
    P1
    PL1
    M
    R
    K

    En pokerhand spelas med fem kort. Hur stor är sannolikheten att starthanden innehåller ett par i ess? (Dvs endast två ess samt tre andra kort.)

     

    Rättar...

a-uppgifter (1)

  • 8. Premium

    Rapportera fel
    (0/0/2)
    ECA
    B
    P1
    PL1
    M
    R
    K

    I en urna finns $100$ lappar, numrerade $1$-$100$.
    På hur många sätt kan man dra fyra av lapparna så att det näst lägsta numret man får blir $10$?

     

    Svar:
    Ditt svar:
    Rätt svar:
    (Korrekta varianter)
    {[{correctAnswer}]}
    Rättar...
...
Upptäck ett bättre
sätt att lära sig
Gör som 100.000+ andra och nå dina mål
med Matematikvideo Premium.
Så funkar det för:
Elever/Studenter Lärare Föräldrar